一站式电子元器件采购平台

华强商城公众号

一站式电子元器件采购平台

元器件移动商城,随时随地采购

华强商城M站

元器件移动商城,随时随地采购

半导体行业观察第一站!

芯八哥公众号

半导体行业观察第一站!

专注电子产业链,坚持深度原创

华强微电子公众号

专注电子产业链,
坚持深度原创

电子元器件原材料采购信息平台

华强电子网公众号

电子元器件原材料采购
信息平台

区别于传统平面式 一文带你了解超级结MOSFET

来源:http://www.elecfans.com/monijishu/zhuanhuanqi/541450.html 发布时间:2017-08-28

摘要: 基于超级结技术的功率MOSFET已成为高压开关转换器领域的业界规范。它们提供更低的RDS(on),同时具有更少的栅极和和输出电荷,这有助于在任意给定频率下保持更高的效率。

        基于超级结技术的功率MOSFET已成为高压开关转换器领域的业界规范。它们提供更低的RDS(on),同时具有更少的栅极和和输出电荷,这有助于在任意给定频率下保持更高的效率。

       在超级结MOSFET出现之前,高压器件的主要设计平台是基于平面技术。这个时候,有心急的网友就该问了,超级结究竟是何种技术,区别于平面技术,它的优势在哪里?各位客官莫急,看完这篇文章你就懂了!

        图1显示了一种传统平面式高压MOSFET的简单结构。平面式MOSFET通常具有高单位芯片面积漏源导通电阻,并伴随相对更高的漏源电阻。使用高单元密度和大管芯尺寸可实现较低的RDS(on)值。

        但大单元密度和管芯尺寸还伴随高栅极和输出电荷,这会增加开关损耗和成本。另外还存在对于总硅片电阻能够达到多低的限制。器件的总RDS(on)可表示为通道、epi和衬底三个分量之和:

RDS(on) = Rch + Repi + Rsub

传统平面式MOSFET结构

图1:传统平面式MOSFET结构

       图2显示平面式MOSFET情况下构成RDS(on) 的各个分量。对于低压MOSFET,三个分量是相似的。但随着额定电压增加,外延层需要更厚和更轻掺杂,以阻断高压。

        额定电压每增加一倍,维持相同的RDS(on)所需的面积就增加为原来的五倍以上。对于额定电压为600V的MOSFET,超过95%的电阻来自外延层。显然,要想显著减小RDS(on)的值,就需要找到一种对漂移区进行重掺杂的方法,并大幅减小epi电阻。

平面式MOSFET的电阻性元件

图2:平面式MOSFET的电阻性元件

         通常,高压的功率MOSFET采用平面型结构,其中,厚的低掺杂的N-的外延层,即epi层,用来保证具有足够的击穿电压,低掺杂的N-的epi层的尺寸越厚,耐压的额定值越大,但是其导通电阻也急剧的增大。

         导通电阻随电压以2.4-2.6次方增长,这样,就降低的电流的额定值。为了得到一定的导通电阻值,就必须增大硅片的面积,成本随之增加。如果类似于IGBT引入少数载流子导电,可以降低导通压降,但是少数载流子的引入会降低工作的开关频率,并产生关断的电流拖尾,从而增加开关损耗。

       高压的功率MOSFET的外延层对总的导通电阻起主导作用,要想保证高压的功率MOSFET具有足够的击穿电压,同时,降低导通电阻,最直观的方法就是:在器件关断时,让低掺杂的外延层保证要求的耐压等级,同时,在器件导通时,形成一个高掺杂N+区,作为功率MOSFET导通时的电流通路,也就是将反向阻断电压与导通电阻功能分开,分别设计在不同的区域,就可以实现上述的要求。

         基于超结SuperJuncTIon的内建横向电场的高压功率MOSFET就是基本这种想法设计出的一种新型器件。内建横向电场的高压MOSFET的剖面结构及高阻断电压低导通电阻的示意图如图3所示。

         英飞凌最先将这种结构生产出来,并为这种结构的MOSFET设计了一种商标CoolMOS,这种结构从学术上来说,通常称为超结型功率MOSFET。

内建横向电场的SuperJuncTIon结构

图3:内建横向电场的SuperJuncTIon结构

        垂直导电N+区夹在两边的P区中间,当MOS关断时,形成两个反向偏置的PN结:P和垂直导电N+、P+和外延epi层N-。栅极下面的的P区不能形成反型层产生导电沟道,P和垂直导电N+形成PN结反向偏置,PN结耗尽层增大,并建立横向水平电场;同时,P+和外延层N-形成PN结也是反向偏置形,产生宽的耗尽层,并建立垂直电场。

        由于垂直导电N+区掺杂浓度高于外延区N-的掺杂浓度,而且垂直导电N+区两边都产生横向水平电场,这样垂直导电的N+区整个区域基本上全部都变成耗尽层,即由N+变为N-,这样的耗尽层具有非常高的纵向的阻断电压,因此,器件的耐压就取决于高掺杂P+区与低掺杂外延层N-区的耐压。

         当MOS导通时,栅极和源极的电场将栅极下的P区反型,在栅极下面的P区产生N型导电沟道,同时,源极区的电子通过导电沟道进入垂直的N+区,中和N+区的正电荷空穴,从而恢复被耗尽的N+型特性,因此导电沟道形成,垂直N+区掺杂浓度高,具有较低的电阻率,因此导通电阻低。

        比较平面结构和沟槽结构的功率MOSFET,可以发现,超结型结构实际是综合了平面型和沟槽型结构两者的特点,是在平面型结构中开一个低阻抗电流通路的沟槽,因此具有平面型结构的高耐压和沟槽型结构低电阻的特性。

        内建横向电场的高压超结型结构与平面型结构相比较,同样面积的硅片可以设计更低的导通电阻,因此具有更大的额定电流值和雪崩能量。由于要开出N+沟槽,它的生产工艺比较复杂,目前N+沟槽主要有两种方法直接制作:通过一层一层的外延生长得到N+沟槽和直接开沟槽。前者工艺相对的容易控制,但工艺的程序多,成本高;后者成本低,但不容易保证沟槽内性能的一致性。

声明:本文观点仅代表作者本人,不代表华强商城的观点和立场。如有侵权或者其他问题,请联系本站修改或删除。

社群二维码

关注“华强商城“微信公众号

调查问卷

请问您是:

您希望看到什么内容: